ELEC 599 Project Abstract and Timeline

Student: Mohammad Sadegh Riazi **Advisor:** Prof. Farinaz Koushanfar **Date:** January 16, 2015

Privacy-Preserving Matching

Abstract: In several scenarios, there is a need to match a query against a dataset, where the query/dataset belongs to different parties and each of them requires keeping their own data private. The importance of this requirement arises in many various areas, e.g., medical history and criminal data. A frequent application of privacy-preserving scenario is matching. For example, Alice wants to find if she has a genetic disorder by matching her genome information with Bob's genetic disorder bank. But she doesn't want to reveal her private information and so does Bob.

This project aims to address the privacy-preserving matching using Yao's Garbled Circuit (GC) protocol. GC protocol has shown to be the most efficient secure two party computation approach. This protocol allows two parties to evaluate a function which is described as a Boolean circuit on their private data. This project objective is to study the applicability of GC-based privacy preserving protocols on real benchmarks and optimize its performance for real application on embedded or reconfigurable devices.

Keywords: Privacy-preserving computing, garbled circuits, secure multiparty computation, Yao's protocol.

Time	Task
Week 1&2	Literature review
January 16-31	
Week 3&4	Implementation of Garbled Circuits
February 1-15	
Week 5&6	Formulating the matching in the GC
February 16-28	framework
Week 7&8	Logic level description of the matching
March 1-15	problem
Week 9&10	Optimization of the secure
March 16-31	communication via Oblivious Transfer
Week 11&12	End-to-end implementation
April 1-15	
Week 13	Evaluation and report
April 16-24	
Week 14	Final presentation
April 24-30	

Timeline: